Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 11, Number 3—March 2005
Research

Rapid Identification of Emerging Pathogens: Coronavirus

Rangarajan Sampath*Comments to Author , Steven A. Hofstadler*, Lawrence B. Blyn*, Mark W. Eshoo*, Thomas A. Hall*, Christian Massire*, Harold M. Levene*, James C. Hannis*, Patina M. Harrell*, Benjamin Neuman†, Michael J. Buchmeier†, Yun Jiang*, Raymond Ranken*, Jared J. Drader*, Vivek Samant*, Richard H. Griffey*, John A. McNeil*, Stanley T. Crooke*, and David J. Ecker*
Author affiliations: *Ibis Therapeutics, Carlsbad, California, USA; †The Scripps Research Institute, La Jolla, California, USA

Main Article

Figure 1

Electrospray ionization Fourier transfer ion cyclotron resonance (ESI-FTICR) mass spectrum from the polymerase chain reaction (PCR) amplicons from the severe acute respiratory syndrome (SARS)-associated coronavirus obtained with the propynylated RNA-dependent RNA polymerase primer pairs. The electrospray ionization conditions separate the sense and antisense strands of the PCR products. Multiple charge states are observed across the m/z range shown. The inset shows an expanded view of the isotop

Figure 1. . Electrospray ionization Fourier transfer ion cyclotron resonance (ESI-FTICR) mass spectrum from the polymerase chain reaction (PCR) amplicons from the severe acute respiratory syndrome (SARS)-associated coronavirus obtained with the propynylated RNA-dependent RNA polymerase primer pairs. The electrospray ionization conditions separate the sense and antisense strands of the PCR products. Multiple charge states are observed across the m/z range shown. The inset shows an expanded view of the isotope envelope of the (M-27H+)27- species. As enumerated in Table 1, the derived molecular masses for the amplicon strands are 27298.518 (+ 0.03) Da and 27125.542 (+ 0.03) Da, corresponding to an unambiguous base composition of A27G19C14T28/ A28G14C19T27 for the double-stranded amplicon, the composition expected for the SARS isolate.

Main Article

Page created: April 25, 2012
Page updated: April 25, 2012
Page reviewed: April 25, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external