Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 1—January 2018
Research

Characterization of a Feline Influenza A(H7N2) Virus

Masato Hatta1, Gongxun Zhong1, Yuwei Gao1, Noriko Nakajima1, Shufang Fan1, Shiho Chiba, Kathleen M. Deering, Mutsumi Ito, Masaki Imai, Maki Kiso, Sumiho Nakatsu, Tiago J. Lopes, Andrew J. Thompson, Ryan McBride, David L. Suarez, Catherine A. Macken, Shigeo Sugita, Gabriele Neumann, Hideki Hasegawa, James C. Paulson, Kathy L. Toohey-Kurth, and Yoshihiro KawaokaComments to Author 
Author affiliations: University of Wisconsin–Madison, Madison, Wisconsin, USA (M. Hatta, G. Zhong, Y. Gao, S. Fan, S. Chiba, K.M. Deering, T.J. Lopes, G. Neumann, K.L. Toohey-Kurth, Y. Kawaoka); National Institute of Infectious Diseases, Tokyo, Japan (N. Nakajima, H. Hasegawa); University of Tokyo, Tokyo (M. Ito, M. Imai, M. Kiso, S. Nakatsu, Y. Kawaoka); The Scripps Research Institute, La Jolla, California, USA (A.J. Thompson, R. McBride, J.C. Paulson); US Department of Agriculture, Athens, Georgia, USA (D.L. Suarez); The University of Auckland, Auckland, New Zealand (C. A. Macken); Japan Racing Association, Tochigi, Japan (S. Sugita)

Main Article

Figure 1

Phylogenetic tree of influenza A viral HA segments. Phylogenetic analysis was performed for selected influenza A viruses representing major lineages. The evolutionary history was inferred using the neighbor-joining method (12). The optimal tree with the branch length sum of 1.22521320 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) is shown next to the branches (13). The tree is drawn to scale, with branch lengths

Figure 1. Phylogenetic tree of influenza A viral HA segments. Phylogenetic analysis was performed for selected influenza A viruses representing major lineages. The evolutionary history was inferred using the neighbor-joining method (12). The optimal tree with the branch length sum of 1.22521320 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) is shown next to the branches (13). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Tamura 3-parameter method (14) and are in the units of the number of base substitutions per site. The analysis involved 44 nt sequences. Codon positions included were 1st + 2nd + 3rd + noncoding. All positions containing gaps and missing data were eliminated. The final dataset contained a total of 1,612 positions. Evolutionary analyses were conducted in MEGA7 (15).

Main Article

References
  1. Wright  PF, Neumann  G, Kawaoka  Y. Orthomyxoviruses. In: Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, et al., editors. Fields Virology. Sixth ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 2013. p. 1186–243.
  2. Crawford  PC, Dubovi  EJ, Castleman  WL, Stephenson  I, Gibbs  EP, Chen  L, et al. Transmission of equine influenza virus to dogs. Science. 2005;310:4825. DOIPubMedGoogle Scholar
  3. Xie  X, Ma  K, Liu  Y. Influenza A virus infection in dogs: epizootiology, evolution and prevention - A review. Acta Vet Hung. 2016;64:12539. DOIPubMedGoogle Scholar
  4. Song  D, Kang  B, Lee  C, Jung  K, Ha  G, Kang  D, et al. Transmission of avian influenza virus (H3N2) to dogs. Emerg Infect Dis. 2008;14:7416. DOIPubMedGoogle Scholar
  5. Lee  YN, Lee  DH, Lee  HJ, Park  JK, Yuk  SS, Sung  HJ, et al. Evidence of H3N2 canine influenza virus infection before 2007. Vet Rec. 2012;171:477. DOIPubMedGoogle Scholar
  6. Fiorentini  L, Taddei  R, Moreno  A, Gelmetti  D, Barbieri  I, De Marco  MA, et al. Influenza A pandemic (H1N1) 2009 virus outbreak in a cat colony in Italy. Zoonoses Public Health. 2011;58:57381. DOIPubMedGoogle Scholar
  7. Belser  JA, Pulit-Penaloza  JA, Sun  X, Brock  N, Pappas  C, Creager  HM, et al. A novel A(H7N2) influenza virus isolated from a veterinarian caring for cats in a New York City animal shelter causes mild disease and transmits poorly in the ferret model. J Virol. 2017;91:e0067217. DOIPubMedGoogle Scholar
  8. Spackman  E, Senne  DA, Davison  S, Suarez  DL. Sequence analysis of recent H7 avian influenza viruses associated with three different outbreaks in commercial poultry in the United States. J Virol. 2003;77:13399402. DOIPubMedGoogle Scholar
  9. Imai  M, Watanabe  T, Hatta  M, Das  SC, Ozawa  M, Shinya  K, et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012;486:4208.PubMedGoogle Scholar
  10. Watanabe  T, Kiso  M, Fukuyama  S, Nakajima  N, Imai  M, Yamada  S, et al. Characterization of H7N9 influenza A viruses isolated from humans. Nature. 2013;501:5515. DOIPubMedGoogle Scholar
  11. Arafa  AS, Yamada  S, Imai  M, Watanabe  T, Yamayoshi  S, Iwatsuki-Horimoto  K, et al. Risk assessment of recent Egyptian H5N1 influenza viruses. Sci Rep. 2016;6:38388. DOIPubMedGoogle Scholar
  12. Saitou  N, Nei  M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:40625.PubMedGoogle Scholar
  13. Felsenstein  J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:78391. DOIPubMedGoogle Scholar
  14. Tamura  K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol. 1992;9:67887.PubMedGoogle Scholar
  15. Kumar  S, Stecher  G, Tamura  K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:18704. DOIPubMedGoogle Scholar
  16. Centers for Disease Control and Prevention. H5N1 genetic changes inventory:
  17. a tool for influenza surveillance and preparedness. 2012 [cited 2017 Jul 27]. https://www.cdc.gov/flu/pdf/avianflu/h5n1-inventory.pdf
  18. Connor  RJ, Kawaoka  Y, Webster  RG, Paulson  JC. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology. 1994;205:1723. DOIPubMedGoogle Scholar
  19. Gambaryan  AS, Tuzikov  AB, Piskarev  VE, Yamnikova  SS, Lvov  DK, Robertson  JS, et al. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology. 1997;232:34550. DOIPubMedGoogle Scholar
  20. Matrosovich  MN, Gambaryan  AS, Teneberg  S, Piskarev  VE, Yamnikova  SS, Lvov  DK, et al. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology. 1997;233:22434. DOIPubMedGoogle Scholar
  21. Wang  H, Wu  X, Cheng  Y, An  Y, Ning  Z. Tissue distribution of human and avian type sialic acid influenza virus receptors in domestic cat. Acta Vet Hung. 2013;61:53746. DOIPubMedGoogle Scholar
  22. Said  AW, Usui  T, Shinya  K, Ono  E, Ito  T, Hikasa  Y, et al. A Sero-survey of subtype H3 influenza a virus infection in dogs and cats in Japan. J Vet Med Sci. 2011;73:5414. DOIPubMedGoogle Scholar
  23. Thongratsakul  S, Suzuki  Y, Hiramatsu  H, Sakpuaram  T, Sirinarumitr  T, Poolkhet  C, et al. Avian and human influenza A virus receptors in trachea and lung of animals. Asian Pac J Allergy Immunol. 2010;28:294301.PubMedGoogle Scholar
  24. Harder  TC, Vahlenkamp  TW. Influenza virus infections in dogs and cats. Vet Immunol Immunopathol. 2010;134:5460. DOIPubMedGoogle Scholar
  25. Fouchier  RA, Schneeberger  PM, Rozendaal  FW, Broekman  JM, Kemink  SA, Munster  V, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101:135661. DOIPubMedGoogle Scholar
  26. Koopmans  M, Wilbrink  B, Conyn  M, Natrop  G, van der Nat  H, Vennema  H, et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet. 2004;363:58793. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: December 19, 2017
Page updated: December 19, 2017
Page reviewed: December 19, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external