Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 27, Number 5—May 2021
Research

Susceptibility to SARS-CoV-2 of Cell Lines and Substrates Commonly Used to Diagnose and Isolate Influenza and Other Viruses

Li Wang, Xiaoyu Fan, Gaston Bonenfant, Dan Cui, Jaber Hossain, Nannan Jiang, Gloria Larson, Michael Currier, Jimma Liddell, Malania Wilson, Azaibi Tamin, Jennifer Harcourt, Jessica Ciomperlik-Patton, Hong Pang, Naomi Dybdahl-Sissoko, Ray Campagnoli, Pei-Yong Shi, John Barnes, Natalie J. Thornburg, David E. Wentworth, and Bin ZhouComments to Author 
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA (L. Wang, X. Fan, J. Hossain, M. Currier, M. Wilson, A. Tamin, J. Harcourt, J. Ciomperlik-Patton, H. Pang, N. Dybdahl-Sissoko, R. Campagnoli, J. Barnes, N.J. Thornburg, D.E. Wentworth, B. Zhou); Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (G. Bonenfant, N. Jiang, G. Larson); Battelle Memorial Institute, Atlanta, Georgia, USA (D. Cui, J. Liddell); University of Texas Medical Branch, Galveston, Texas, USA (P.-Y. Shi)

Main Article

Figure 10

Aligned ACE2 protein sequences from human, rhesus macaque, African green monkey, cat, dog, American mink, mouse, and chicken cells in study of susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of cell lines and substrates used to diagnose and isolate influenza and other viruses. Residues involved in interaction with SARS-CoV-2 spike protein (41–44) shown using hACE2 numbering; yellow indicates residues varying from hACE2. Dash indicates gap in alignment. Percentage identity to hACE2 across the entire protein is shown. ACE, angiotensin-converting enzyme 2; cACE2, canine ACE2; hACE2, human ACE2.

Figure 10. Aligned ACE2 protein sequences from human, rhesus macaque, African green monkey, cat, dog, American mink, mouse, and chicken cells in study of susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of cell lines and substrates used to diagnose and isolate influenza and other viruses. Residues involved in interaction with SARS-CoV-2 spike protein (4144) shown using hACE2 numbering; yellow indicates residues varying from hACE2. Dash indicates gap in alignment. Percentage identity to hACE2 across the entire protein is shown. ACE, angiotensin-converting enzyme 2; cACE2, canine ACE2; hACE2, human ACE2.

Main Article

References
  1. Kim  D, Quinn  J, Pinsky  B, Shah  NH, Brown  I. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA. 2020;323:20856. DOIPubMedGoogle Scholar
  2. Li  Z, Chen  ZM, Chen  LD, Zhan  YQ, Li  SQ, Cheng  J, et al. Coinfection with SARS-CoV-2 and other respiratory pathogens in patients with COVID-19 in Guangzhou, China. J Med Virol. 2020;92:23813. DOIPubMedGoogle Scholar
  3. Konala  VM, Adapa  S, Naramala  S, Chenna  A, Lamichhane  S, Garlapati  PR, et al. A case series of patients coinfected with influenza and COVID-19. J Investig Med High Impact Case Rep. 2020;8:2324709620934674. DOIPubMedGoogle Scholar
  4. Yue  H, Zhang  M, Xing  L, Wang  K, Rao  X, Liu  H, et al. The epidemiology and clinical characteristics of co-infection of SARS-CoV-2 and influenza viruses in patients during COVID-19 outbreak. J Med Virol. 2020;92:28703. DOIPubMedGoogle Scholar
  5. Harcourt  J, Tamin  A, Lu  X, Kamili  S, Sakthivel  SK, Murray  J, et al. severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States. Emerg Infect Dis. 2020;26:126673. DOIPubMedGoogle Scholar
  6. Xie  X, Muruato  A, Lokugamage  KG, Narayanan  K, Zhang  X, Zou  J, et al. An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe. 2020;27:841848.e3. DOIPubMedGoogle Scholar
  7. Hoffmann  M, Kleine-Weber  H, Pöhlmann  S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. 2020;78:779784.e5. DOIPubMedGoogle Scholar
  8. Chu  H, Hu  B, Huang  X, Chai  Y, Zhou  D, Wang  Y, et al. Host and viral determinants for efficient SARS-CoV-2 infection of the human lung. Nat Commun. 2021;12:134. DOIPubMedGoogle Scholar
  9. Johnson  BA, Xie  X, Bailey  AL, Kalveram  B, Lokugamage  KG, Muruato  A, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature. 2021;591:2939. DOIPubMedGoogle Scholar
  10. Lu  X, Wang  L, Sakthivel  SK, Whitaker  B, Murray  J, Kamili  S, et al. US CDC Real-time reverse transcription PCR panel for detection of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020;26:165465. DOIPubMedGoogle Scholar
  11. Zhou  B, Thao  TTN, Hoffmann  D, Taddeo  A, Ebert  N, Labroussaa  F, et al. SARS-CoV-2 spike D614G variant confers enhanced replication and transmissibility. Nature. 2021; [Epub ahead of print]. DOIGoogle Scholar
  12. Matrosovich  M, Matrosovich  T, Carr  J, Roberts  NA, Klenk  HD. Overexpression of the alpha-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. J Virol. 2003;77:841825. DOIPubMedGoogle Scholar
  13. Takada  K, Kawakami  C, Fan  S, Chiba  S, Zhong  G, Gu  C, et al. A humanized MDCK cell line for the efficient isolation and propagation of human influenza viruses. Nat Microbiol. 2019;4:126873. DOIPubMedGoogle Scholar
  14. Wang  W, Xu  Y, Gao  R, Lu  R, Han  K, Wu  G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323:18434. DOIPubMedGoogle Scholar
  15. Cheung  KS, Hung  IFN, Chan  PPY, Lung  KC, Tso  E, Liu  R, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology. 2020;159:8195. DOIPubMedGoogle Scholar
  16. Young  BE, Ong  SWX, Kalimuddin  S, Low  JG, Tan  SY, Loh  J, et al.; Singapore 2019 Novel Coronavirus Outbreak Research Team. Singapore 2019 novel coronavirus outbreak research team. epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020;323:148894. DOIPubMedGoogle Scholar
  17. Xu  Y, Li  X, Zhu  B, Liang  H, Fang  C, Gong  Y, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26:5025. DOIPubMedGoogle Scholar
  18. Zheng  S, Fan  J, Yu  F, Feng  B, Lou  B, Zou  Q, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. 2020;369:m1443. DOIPubMedGoogle Scholar
  19. Tang  A, Tong  ZD, Wang  HL, Dai  YX, Li  KF, Liu  JN, et al. Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg Infect Dis. 2020;26:13379. DOIPubMedGoogle Scholar
  20. COVID-19 Investigation Team. Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nat Med. 2020;26:8618. DOIPubMedGoogle Scholar
  21. Wentworth  DE, Holmes  KV. Coronavirus binding and entry. Thiel V, editor. Coronaviruses: molecular and cellular biology. Norfolk (UK): Caister Academic Press; 2007. p. 3–31
  22. Zhang  H, Penninger  JM, Li  Y, Zhong  N, Slutsky  AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:58690. DOIPubMedGoogle Scholar
  23. Abdel-Moneim  AS, Abdelwhab  EM. Evidence for SARS-CoV-2 infection of animal hosts. Pathogens. 2020;9:E529. DOIPubMedGoogle Scholar
  24. Oreshkova  N, Molenaar  RJ, Vreman  S, Harders  F, Oude Munnink  BB, Hakze-van der Honing  RW, et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill. 2020;25:2001005. DOIPubMedGoogle Scholar
  25. Munster  VJ, Feldmann  F, Williamson  BN, van Doremalen  N, Pérez-Pérez  L, Schulz  J, et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature. 2020;585:26872. DOIPubMedGoogle Scholar
  26. Bosco-Lauth  AM, Hartwig  AE, Porter  SM, Gordy  PW, Nehring  M, Byas  AD, et al. Experimental infection of domestic dogs and cats with SARS-CoV-2: Pathogenesis, transmission, and response to reexposure in cats. Proc Natl Acad Sci U S A. 2020;117:263828. DOIPubMedGoogle Scholar
  27. Halfmann  PJ, Hatta  M, Chiba  S, Maemura  T, Fan  S, Takeda  M, et al. Transmission of SARS-CoV-2 in domestic cats. N Engl J Med. 2020;383:5924. DOIPubMedGoogle Scholar
  28. Singla  R, Mishra  A, Joshi  R, Jha  S, Sharma  AR, Upadhyay  S, et al. Human animal interface of SARS-CoV-2 (COVID-19) transmission: a critical appraisal of scientific evidence. Vet Res Commun. 2020;44:11930. DOIPubMedGoogle Scholar
  29. Chu  H, Chan  JF, Yuen  TT, Shuai  H, Yuan  S, Wang  Y, et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe. 2020;1:e1423. DOIPubMedGoogle Scholar
  30. Barr  IG, Rynehart  C, Whitney  P, Druce  J. SARS-CoV-2 does not replicate in embryonated hen’s eggs or in MDCK cell lines. Euro Surveill. 2020;25:2001122. DOIPubMedGoogle Scholar
  31. Hattermann  K, Müller  MA, Nitsche  A, Wendt  S, Donoso Mantke  O, Niedrig  M. Susceptibility of different eukaryotic cell lines to SARS-coronavirus. Arch Virol. 2005;150:102331. DOIPubMedGoogle Scholar
  32. Kaye  M, Druce  J, Tran  T, Kostecki  R, Chibo  D, Morris  J, et al. SARS-associated coronavirus replication in cell lines. Emerg Infect Dis. 2006;12:12833. DOIPubMedGoogle Scholar
  33. Yamashita  M, Yamate  M, Li  GM, Ikuta  K. Susceptibility of human and rat neural cell lines to infection by SARS-coronavirus. Biochem Biophys Res Commun. 2005;334:7985. DOIPubMedGoogle Scholar
  34. Drosten  C, Günther  S, Preiser  W, van der Werf  S, Brodt  HR, Becker  S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:196776. DOIPubMedGoogle Scholar
  35. Gillim-Ross  L, Taylor  J, Scholl  DR, Ridenour  J, Masters  PS, Wentworth  DE. Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR. J Clin Microbiol. 2004;42:3196206. DOIPubMedGoogle Scholar
  36. Hattermann  K, Müller  MA, Nitsche  A, Wendt  S, Donoso Mantke  O, Niedrig  M. Susceptibility of different eukaryotic cell lines to SARS-coronavirus. Arch Virol. 2005;150:102331. DOIPubMedGoogle Scholar
  37. Ksiazek  TG, Erdman  D, Goldsmith  CS, Zaki  SR, Peret  T, Emery  S, et al.; SARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:195366. DOIPubMedGoogle Scholar
  38. Mossel  EC, Huang  C, Narayanan  K, Makino  S, Tesh  RB, Peters  CJ. Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication. J Virol. 2005;79:384650. DOIPubMedGoogle Scholar
  39. Severson  WE, Shindo  N, Sosa  M, Fletcher  T III, White  EL, Ananthan  S, et al. Development and validation of a high-throughput screen for inhibitors of SARS CoV and its application in screening of a 100,000-compound library. J Biomol Screen. 2007;12:3340. DOIPubMedGoogle Scholar
  40. Yen  YT, Liao  F, Hsiao  CH, Kao  CL, Chen  YC, Wu-Hsieh  BA. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virol. 2006;80:268493. DOIPubMedGoogle Scholar
  41. Yan  R, Zhang  Y, Li  Y, Xia  L, Guo  Y, Zhou  Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:14448. DOIPubMedGoogle Scholar
  42. Wang  Q, Zhang  Y, Wu  L, Niu  S, Song  C, Zhang  Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181:894904.e9. DOIPubMedGoogle Scholar
  43. Lan  J, Ge  J, Yu  J, Shan  S, Zhou  H, Fan  S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581:21520. DOIPubMedGoogle Scholar
  44. Shang  J, Ye  G, Shi  K, Wan  Y, Luo  C, Aihara  H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581:2214. DOIPubMedGoogle Scholar
  45. Enserink  M. Coronavirus rips through Dutch mink farms, triggering culls. Science. 2020;368:1169. DOIPubMedGoogle Scholar
  46. Molenaar  RJ, Vreman  S, Hakze-van der Honing  RW, Zwart  R, de Rond  J, Weesendorp  E, et al. Clinical and pathological findings in SARS-CoV-2 disease outbreaks in farmed mink (Neovison vison). Vet Pathol. 2020;57:6537. DOIPubMedGoogle Scholar
  47. Hammer  AS, Quaade  ML, Rasmussen  TB, Fonager  J, Rasmussen  M, Mundbjerg  K, et al. SARS-CoV-2 Transmission between mink (Neovison vison) and humans, Denmark. Emerg Infect Dis. 2021;27:54751. DOIPubMedGoogle Scholar
  48. Oude Munnink  BB, Sikkema  RS, Nieuwenhuijse  DF, Molenaar  RJ, Munger  E, Molenkamp  R, et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science. 2021;371:1727. DOIPubMedGoogle Scholar

Main Article

Page created: February 24, 2021
Page updated: April 20, 2021
Page reviewed: April 20, 2021
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external